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Abstract

Full system “end-to-end” measurements in physical testbeds are

the gold standard for network systems evaluation but are often not

feasible. When physical testbeds are not available we frequently

turn to simulation for evaluation. Unfortunately, existing simulators

are insufficient for end-to-end evaluation, as they either cannot

simulate all components, or simulate them with inadequate detail.

We address this through modular simulation, flexibly combining

and connecting multiple existing simulators for different compo-

nents, including processor and memory, devices, and network, into

virtual end-to-end testbeds tuned for each use-case. Our architec-

ture, SimBricks, combines well-defined component interfaces for

extensibility and modularity, efficient communication channels for

local and distributed simulation, and a co-designed efficient syn-

chronization mechanism for accurate timing across simulators. We

demonstrate SimBricks scales to 1000 simulated hosts, each run-

ning a full software stack including Linux, and that it can simulate

testbeds with existing NIC and switch RTL implementations. We

also reproduce key findings from prior work in congestion control,

NIC architecture, and in-network computing in SimBricks.

CCS Concepts

• Networks→ Network simulations; Data center networks; Net-
work servers; Network adapters; Bridges and switches; • Hard-

ware→ Networking hardware; Buses and high-speed links.
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1 Introduction

Our community expects research ideas to be implemented and

evaluated as part of a complete system “end-to-end” in realistic

conditions. End-to-end evaluation is important as many factors in

each system component affect the overall behavior in subtle and

unpredictable ways.
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Yet evaluation in full physical testbeds is frequently infeasible.

Work might require cutting edge commercial hardware that is not

yet available at the time of publication [32, 33, 35, 50], develop hard-

ware extensions to existing proprietary hardware [51], or propose

entirely new ASIC hardware architectures [9, 13, 25, 27, 34, 36, 53,

55]. The trend towards increasingly specialized hardware, includ-

ing SmartNICs, programmable switches, and other accelerators,

further exacerbates this. Finally, work on network protocols and

congestion control necessitates evaluation in large scale networks

with hundreds to thousands of hosts.

When a full evaluation in a physical testbed is not possible,

simulation has long offered an alternative. In networking, we use

ns-2 [43], ns-3 [44], and OMNeT++ [57] to evaluate protocols and

algorithms; computer architects rely on system simulators such

as gem5 [8], while hardware designers employ RTL simulators

such as Modelsim [52] or Verilator [54]. While network systems do

benefit from these simulators [4, 28, 41], they do not enable end-

to-end evaluation, as no existing simulator simulates all required

components in a testbed: hosts, devices, and the full network.

In this paper, we demonstrate how to enable end-to-end network

system simulation by combining different simulators to cover the

necessary functionality. Instead of building a new simulator, throw-

ing away decades of work, we connect existing and new simulators –

for hosts, hardware devices, and networks – into full system simula-

tions capable of running unmodified operating systems, drivers, and

applications. Existing simulators, however, are standalone and not

designed to be combined with other simulators. To achieve modular

end-to-end simulation, we thus need to overcome three technical

challenges: 1) no interfaces to connect simulators together, 2) ef-

ficient, scalable, and correct synchronization of simulator clocks,

and 3) combining mutually incompatible simulation models.

We present the design and implementation of SimBricks, a mod-
ular simulation framework for end-to-end network system simula-
tions. SimBricks defines interfaces for interconnecting simulators

based on natural component boundaries in physical systems, specif-

ically PCIe and Ethernet links. Individual component simulators

run in parallel as separate processes, and communicate via message

passing only between connected peers through optimized shared

memory queues. With this message transport, we co-design a pro-

tocol that leverages simulation topology and latency at component

boundaries for efficient and accurate synchronization of simulator

clocks. For scaling out simulations across physical hosts, we intro-

duce a proxy to forward messages over TCP or RDMA.

Currently, SimBricks integrates QEMU [46] and gem5 [8] as host

simulators, Verilator [54] as an RTL hardware simulator for hard-

ware devices, and ns-3 [44], OMNeT++ [57], as well as the Intel
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Tofino simulator [23] for network simulation. Further, we have inte-

grated open source RTL designs for the Corundum FPGA NIC [16]

and the Menshen switch pipeline [58] to showcase SimBricks’s gen-

erality. We have also implemented fast behavioral simulators, e.g.

for the Intel X710 40G NIC [22], and ported the FEMU NVMe SSD

model [31] into SimBricks. In combination, these simulators enable

a broad range of end-to-end configurations for different use-cases.

In our evaluation, we demonstrate that SimBricks enables end-

to-end simulation of existing network systems at small and large

scales. We also reproduce key results from congestion control [3],

in-network compute [33], and FPGA NIC design [16] in SimBricks.

SimBricks obtains more realistic results compared to ns-3 in isola-

tion (§3). SimBricks also scales to 1000 hosts and NICs with only a

14% increase in simulation time compared to a 40-host simulation

(§7.4). Finally, SimBricks provides deep visibility and control of low-

level system behaviors, facilitating evaluation and performance

debugging (§8.1).

We make the following technical contributions:

• Modular architecture for end-to-end system simulation (§5.1)

combining host, device, and network simulators.

• Co-designed message transport and synchronization mecha-
nism for parallel and distributed simulations (§5.5, §5.2) lever-
aging pairwise message passing to efficiently ensure correct

simulation, even at scale.

• SimBricks, a prototype implementation of our architecture

(§6) with integrations for existing and new simulators.

SimBricks is available open source at https://simbricks.github.io

This work does not raise any ethical issues.

2 Simulation Background

Simulators employ techniques such as discrete event simulation,

binary translation, and hardware virtualization, to simulate system

components at various scales and levels of detail. Network simula-

tors, such as ns-2 [43], ns-3 [44], and OMNeT++ [57], use discrete

event simulation to model packets traversing network topologies.

Computer architecture simulators, such as gem5 [8], QEMU [46],

and Simics [37], simulate full computer systems capable of running

unmodified guest software, including operating systems, with differ-

ent and sometimes configurable degrees of detail. These simulators

also include I/O devices, but often only implement the minimum

features for basic functionality. Hardware RTL simulations, such as

xsim [59] and Verilator [54], help test and debug hardware designs

cycle by cycle against testbenches. In all three cases individual
components are simulated in isolation.

Advantages. The main motivation for simulation is that a physi-

cal implementation is often not feasible. Simulations are also portable
as they decouple the simulated system from the host system. Many

are deterministic (with explicit seeds for randomness), providing

reproducible results. Simulators are also flexible; implemented as

software they can be modified, and frequently offer parameters

representing a broad range of configurations. Finally, simulations

provide great visibility, and can log details about the system, with-

out affecting behavior.

Disadvantages. Simulations also have some common drawbacks.

Long simulation times are common – architectural simulators often
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Figure 1: Throughput for two dctcp flows in ns-3, a physical

testbed, and a SimBricks end-to-end simulation.

only simulate hundreds or thousands of system cycles a second [26,

55], and simulating a few milliseconds of a large scale topology

in ns-3 can take many hours. Different simulators strike different

trade-offs between accuracy and simulation time, depending on

the intended use-case. Finally, simulation results are only as good

as the simulator, and may not be representative unless validated
against a physical testbed.

Comparison to Emulation. Emulations replicate externally visible

behavior of a system without modeling internal details, and typi-

cally run at close to interactive speeds. For example, Mininet [30]

emulates OpenFlow networks with multiple end-hosts running real

Linux applications at near native speed on a single physical host,

by using Linux containers and kernel network features. However,

as emulation uses wall-clock time, it only works as long as all com-

ponents can keep up in real time. Simulations, in contrast, rely on

virtual time which can slow down without affecting simulated be-

havior. Additionally, emulation does not model internals of a system

that could affect system behavior, e.g., interactions between NIC

and drivers. As such, emulation is primarily useful for interactive

testing or performance evaluation when fidelity is not crucial.

3 Systems Research Challenges

Systems research faces additional challenges that complicate using

simulation during prototyping and evaluation.

Not end-to-end. First and foremost, no existing simulator covers
all required components for network systems with sufficient features
and detail, precluding end-to-end evaluation. While existing simu-

lators cover individual components, such as computer architecture,

hardware devices, and networks, they only do so in isolation with

no mechanism for combining them into complete systems. As a re-

sult, we are left with non-end-to-end “piecemeal” evaluation, where

different components are evaluated in isolation [4, 20, 41].

We illustrate the pitfalls of piecemeal evaluation by comparing

dctcp [3] congestion control behavior in the ns-3 network simulator

to a physical testbed. As network speed increases and bottlenecks

move to end-hosts, congestion control incurs small variations in

timing in the host hardware and software which can affect behav-

ior [3, 29, 40]. However, ns-3 only models network and protocol

behavior, and as a result, does not capture these factors. We set

up two clients and two servers sharing a single 10G bottleneck

2
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link with a 4000B MTU, and one large TCP flow generated by iperf

for each client-server pair. Fig. 1 shows the throughput for vary-

ing dctcp marking thresholds 𝐾 . The marking threshold balances

queuing latency and throughput; a lower threshold reduces queue

length but risks under-utilizing links. ns-3 underestimates the nec-

essary threshold [3] to achieve line rate, as it does not model host

processing variations, particularly processing delay caused by OS

interrupt scheduling. Only an end-to-end evaluation of the full

system captures such intricacies.

Not scalable. Network and distributed systems frequently require

evaluation on clusters beyond tens of hosts to demonstrate scalabil-

ity. But for most simulators, already long simulation times increase

super-linearly with the size of the simulated system, making simu-

lation of a large network system an infeasible task.

Not modular. Using simulators for systems research often re-

quires extending existing simulators with additional functionality,

e.g., adding a new NIC to an architecture simulator. These exten-

sions are tied to a particular simulator, as different simulators lack

common internal interfaces, This complicates apples-to-apples com-

parisons for future work that may use a different simulator, e.g., to

simulate a host with a different NIC, forcing the same simulator to

be used throughout the project cycle. Finally, this tight integration

complicates the implementation and releasing of such extensions,

as they often require maintaining a fork of the full simulator.

4 Modular Simulation

We argue that end-to-end simulations can be effectively assembled
from multiple different interconnected and synchronized simulators
for individual components. To demonstrate this, we present Sim-

Bricks, a new modular simulation framework that aims to provide

end-to-end network system simulation.

End-to-end simulations are better. Returning to the dctcp example

from earlier, Fig. 2 shows the simulation setup that produces the

result shown in Fig. 1. We combine four instances of gem5 with

four instances of the Intel i40e NIC simulator we developed, each

pair connected through PCIe; all NIC simulators are in turn con-

nected to an instance of ns-3. The gem5 instances are running a

full Ubuntu image with unmodified NIC drivers and iperf. Fig. 1

shows that our SimBricks simulation approximates the behavior

of the physical testbed much more closely than ns-3, and yields

the same insight. We conclude that end-to-end evaluation with

SimBricks improves accuracy for network system evaluation over

non-end-to-end simulators.

4.1 Design Goals

To address the challenges for using simulations in systems research,

(§3), we have the following design goals for SimBricks:

• End-to-end: simulate full network systems, with hosts, ex-

isting or custom devices, network topologies, and the full

software stack, including unmodified OS and applications.

• Scalable: simulate large network systems consisting of tens

or hundreds of separate hosts and devices.

• Fast: keep simulation times as low as possible.

• Modular: enable flexible composition of simulators, where

components can be added and swapped independently.

Figure 2: SimBricks configuration for the dctcp experiment

in Fig. 1, combining gem5, ns-3, and an Intel NIC simulator.

Each simulator runs in a separate process.

• Accurate: preserve accuracy of constituent simulators, cor-

rectly interface and synchronize components to behave equiv-

alent to a monolithic simulator with the same models.

• Deterministic: keep end-to-end simulation deterministic

when all individual simulators are deterministic.

• Transparent: provide deep and detailed visibility into end-

to-end performance without affecting simulation behavior,

to support debugging and performance analysis.

4.2 Technical Challenges

Achieving our design goals incurs the following challenges:

Simulation interconnection interfaces. Unfortunately, existing sim-

ulators are standalone and provide no suitable interfaces for in-

terconnecting with other external simulators. Moreover, enabling

modular “plug-and-play” configurations, where components can

be independently swapped out, requires common, well-defined

interfaces between different component types.

Scalable synchronization and communication. Individual compo-

nent simulators maintain their own virtual simulation clocks that

progress at different rates. To accurately connect simulators, we

need to synchronize their virtual clocks. However, this synchro-

nization comes at a performance cost, especially with increasing

system scale. For example, we measure a 3.7× increase in runtime

for the dist-gem5 [42] simulator when scaling from 2 to 16 simulated

hosts, due to synchronization overhead (§7.3.1). Prior work shows

synchronization overhead can be reduced by sacrificing accuracy

and determinism through lax synchronization. [12, 19]. Since this

violates two of our design goals, we do not consider this.

Incompatible simulation models. Finally, different simulators of-

ten employ mutually incompatible simulation models. For example,

QEMU has a synchronous device model where calls in device code

block until complete, while ns-3 schedules asynchronous events to

model networks, and Verilator simulates hardware circuits cycle by

cycle. We therefore need an interface compatible with all of these

simulation models.

4.3 Design Principles

We address these challenges through four design principles:

Fix natural component simulator interfaces. To enable modular

composition of simulators, SimBricks defines an interface for each

component type (§5.1). We base these interfaces on the point-to-
point component boundaries in real systems: PCI express (PCIe)

connects today’s hardware devices to servers, while network de-

vices typically connect through Ethernet networks. We choose

3
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these interfaces as a starting point, but our approach generalizes

to other interconnects and networks. These component interfaces

form narrow waists, decoupling innovation on both sides: To inte-

grate a simulator into SimBricks, developers need to add an adapter

that implements the component interface, without needing to mod-

ify other simulators. We assume a static topology of components

throughout a simulation.

Loose coupling with message passing. Instead of tightly integrat-

ing multiple simulators into one simulation loop, SimBricks runs

component simulators as separate processes that communicate

through message passing (§5.1) across our defined interfaces. This

drastically simplifies integrating simulators into SimBricks, as we

treat each simulator as a black-box that only needs to implement our

interfaces. Using asynchronous message passing also maximizes

compatibility with different simulation models: Discrete event and

cycle-by-cycle simulations can issue requests and process responses

at the scheduled times, while blocking simulations can block till the

response message arrives — for peer simulators this is transparent.

Message passing channels also provide inspection points for debug-

ging and tracing system behavior without modifying component

simulators.

Parallel execution with shared memory queues. We run simulators

in parallel on different host cores and connect them through opti-

mized shared-memory queues (§5.2). As simulators run on separate

cores and only communicate when necessary, this avoids unnec-

essary cache-coherence traffic and hidden scalability bottlenecks.

These mechanisms allow us to (i) scale up to large simulations:

Instead of simulating the complete system in one simulation in-

stance, we simulate different components of the system in separate

simulators running in parallel (§5.3). (ii) scale out with distributed

simulations: We use a separate proxy that transparently forwards

messages on shared memory queues over the network to and from

simulators running on remote hosts (§5.4).

Accurate and efficient synchronization. We ensure accurate simu-

lation through correct time synchronization among simulators, but

with minimum runtime overhead. Synchronization is optional, and
the user can disable it for unsynchronized emulations. For this, we

combine three key insights: 1) Global synchronization is not neces-
sary as our simulator boundaries at point-to-point interfaces limit

which simulators directly communicate. As long as events at these

pairwise interfaces are processed in a time-synchronized manner,

simulation behavior is correct. 2) Latency at component interfaces
provides slack, reducing frequency of component having to wait

for others to coordinate [12] and thus synchronization overhead.

An event sent at time 𝑇 only arrives at 𝑇 + Δ, as our component

interfaces have an inherent latency Δ in physical systems that we

model. 3) By inlining synchronization with efficient polled message
transfers, synchronization overheads can be minimized and some-

times completely avoided. We combine these observations to design

an accurate, efficient, and scalable synchronization mechanism for

parallel end-to-end simulations (§5.5).

4.4 Non-Goals

SimBricks is not a panacea. We explicitly view the following aspects

as out of scope for this paper and leave them for future work:

Figure 3: SimBricks architecture. Double hour glass with nar-

row waists between hosts and devices, and NICs and net-

works.

Accelerating component simulators. SimBricks does not generally

aim to reduce simulation times for individual component simulators

as we only modify simulators to add SimBricks adapters. Simulation

times for synchronized end-to-end SimBricks simulations are at

least as high as the slowest component simulator, and may increase

due to synchronization and communication overhead. However, in a

few cases, SimBricks interfaces enable developers to decompose an

existing component simulator into multiple smaller parallel pieces,

thereby reducing simulation time (§7.3.2).

Avoiding need for validation. To obtain representative results,

users need to validate component simulation configurations in

SimBricks as with any other simulation. Validation effort is no

higher in SimBricks than it would be in an equivalent monolithic

simulator, as SimBricks forwards timestamped events accurately

from one simulator-internal interface to another without modifying

them (except for the configured link latency). We expect, however,

that SimBricks could reduce validation effort by allowing users to

re-combine validated component simulator configurations without

validating from scratch. (§9)

Interfacing semantically incompatible simulators. While SimBricks

can combine simulators that use different models for simulation,

it cannot bridge semantic gaps between simulators. For example,

SimBricks cannot connect a gem5 host sending packets through an

RTL NIC with a flow-based network simulator. Such conversions

may be possible in special cases, but are specific to the concrete

simulators, and as such could be integrated as part of a SimBricks

adapter in such a simulator.

5 Design

Using our design principles, we have built SimBricks, a modular,

end-to-end simulation framework shown in Fig. 3. In this section,

we detail the design of SimBricks, including simulator interfaces,

fast message transport, techniques to scale up and out to larger

simulations, and the synchronization mechanism.

4
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PCIe: Device→ Host

Message Type Message Fields

INIT_DEV

PCI vendor, device id, class,

subclass, revision,

# of MSI vectors, # of MSI-X vectors,

table/PBA bar and offset

DMA_READ,
DMA_WRITE

request ID, memory address, length,

payload data (optional)

MMIO_COMPL request ID, payload data (optional)

INTERRUPT
interrupt type,

MSI/MSI-X: vector #,

legacy: level

PCIe: Host→ Device

Message Type Message Fields

DMA_COMPL request ID, payload data (optional)

MMIO_READ,
MMIO_WRITE

request ID, BAR # and offset, length,

payload data (optional)

INT_STATUS interrupts enabled: legacy, MSI, MSI-X

Ethernet: NIC↔ Net / Net↔ Net

Message Type Message Fields

PACKET packet length, packet data

Figure 4: SimBricks’s simulator interfaces: PCIe between host

and device, and Ethernet between network components.

5.1 Component Simulator Interfaces

SimBricks achieves modularity through well-defined interfaces

between component simulators: Host simulators connect to device

simulators through a PCIe interface; NIC and network simulators

interconnect through an Ethernet interface. This results in a double

hourglass architecture (Fig. 3) with narrow waists at component

boundaries. In physical systems both interfaces are asynchronous

and incur propagation delay (Δ𝑖 ). We replicate both aspects.

5.1.1 PCIe: Host-Device Interface
PCIe itself is a layered protocol, ranging from the low-level physi-

cal layer to the transactional layer for data operations. We define

SimBricks’s host-device interface (Fig. 4) based on the PCIe transac-
tional layer, and abstract away physical attributes of the PCIe link

with simple parameters – link bandwidth and latency. Low-level

complexity such as encoding and signaling are unnecessary for

most system simulations and would incur substantial cost and com-

plexity for each simulator. Should future use-cases need to model

this, a detailed PCIe simulator could be integrated as an interposed

component (§5.3).

Discovery and Initialization. A key PCIe feature is that hosts can

enumerate and identify connected devices and the features they

support. To this end, our interface defines the INIT_DEV message

for registering device simulators with the host simulator. The device

simulator includes device information in the message, such as the

PCI vendor, device identifiers, base address registers (BARs), the

number of MSI(-X) interrupt vectors, and addresses of the MSI-X

table and PBA. The host simulator uses this information to expose

a corresponding PCIe device to the system.

Data transfers: MMIO & DMA. PCIe data transfers are symmetri-

cal: both sides can initiate reads and writes, which the other side

completes. SimBricks’s PCIe interface defines DMA_READ / WRITE
messages for DMA transfers initiated by device simulators, and

MMIO_READ / WRITE for MMIO accesses initiated by host simulators.

As in PCIe, all data transfer operations are asynchronous. Once a re-
quest is finished, the device simulator issues a MMIO_COMPL comple-

tion message, while the host simulator adapter sends a DMA_COMPL.
PCIe allows multiple outstanding operations and only guarantees

that they will be issued to the memory system in the order of

arrival. Completion events, however, may arrive out-of-order. To

match completions with outstanding requests, all requests carry an

identifier that the receiving simulator includes in the response.

Interrupts. Our interface supports all PCIe interrupt signaling
methods: legacy interrupts (INTX), message signaled interrupts

(MSI), and MSI-X. Physical PCIe devices implement MSI (including

configuration, masking, and generating signalling operations) com-

pletely on the device side. To reduce repeated implementation effort

in device simulators and integration challenges in host simulators,

we instead opt to keep this functionality inside the host simulator.

Device issues INTERRUPT messages to either trigger an interrupt

vector for MSI(-X) or to set interrupt pin state for INTX. To support

devices that require knowledge about which interrupt mechanisms

the OS has enabled, our interface provides the INT_STATUSmessage

which the host simulator sends on configuration changes.

5.1.2 Ethernet: Network Component Interface
In SimBricks’s network interface, we similarly abstract away low-

level details of the Ethernet standard, and only expose Ethernet

frames, as PACKET messages, to NIC and network simulators. A

PACKET message carries the length of the packet alongside packet

payload, but omits CRCs to reduce overhead as none of our network

simulators models them and most NICs strip them after validation.

If future network or NIC simulators require CRCs, their SimBricks

adapter can transparently generate and strip the checksums, as

we currently do not model data corruption. We leave support for

hardware flow control as future work.

5.2 Inter-Simulator Message Transport

SimBricks runs component simulators as separate processes com-

municating through message passing. Thus, efficient inter-process

communication is critical for the overall performance. We use op-

timized shared memory queues with polling for efficient message

transport between simulators. For parallel processes on separate

cores, shared memory queues enable low-latency communication

with minimal overhead [5, 7]. Between any pair of communicating
simulators, SimBricks establishes a bidirectional message channel

consisting of a pair of unidirectional queues in opposite directions.

During channel initialization, SimBricks uses a Unix socket to pro-

vide a named endpoint for connection setup and for communicating

queue parameters and shared memory file descriptors.

SimBricks uses concurrent, circular, single-producer and con-

sumer queues. They comprise an array of fixed-sized, cache line

5
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aligned message slots. The last byte in each slot is reserved for meta-

data: one bit indicating the current owner of the slot (consumer or

producer) and the rest for the message type. As queues are single-

producer and single-consumer, we store the tail pointer locally at

the producer and the head pointer at the consumer. Consumers poll

for a message in the next slot, until the ownership flag indicates

consumer. After processing the message the consumer resets the

ownership flag. Producers similarly wait for the next slot to be

available, fill it, and switch the ownership flag.

The SimBricks message transport design avoids cache coherence

overhead unless it is fundamentally necessary. Since head and tail

pointers are local to consumer and producer respectively, only ac-

cesses to shared message slots result in coherence traffic. Moreover,

as long as a consumer does not poll in between the producer writ-

ing a message to the corresponding slot and setting the ownership

bit, all coherence traffic carries necessary data from producer to

consumer [5]. We include additional detail and pseudocode in §A.2.

5.3 Scaling Up with Decomposition

SimBricks can scale to larger simulations by adding more compo-

nent simulators. For instance, a network simulator connecting to

many devices may become a bottleneck as it needs to synchronize

with all peers. We leverage the SimBricks architecture to improve

scalability, by decomposing the network simulator into multiple

processes that connect and synchronize via SimBricks Ethernet

interfaces. Other simulators, such as a gem5 simulated host, can

be accelerated in a similar fashion by decomposing into connected

components. We will demonstrate the scalability benefit of our

decomposition approach in §7.4.

5.4 Scaling Out with Proxies

Running simulators in parallel on dedicated cores maximizes par-

allelism, but the number of available cores in a single machine

limits simulation size. Message passing and modular simulation

in SimBricks enables us to scale out simulations by partitioning

components to multiple hosts and replacing message queues be-

tween simulators on different hosts with network communication.

However, directly implementing this in individual component sim-

ulators has two major drawbacks. First, it increases the complexity

for integration, as each simulator adapter needs to implement an

additional message transport. Second, it increases communication

overhead in component simulators, leaving fewer processor cycles

for simulators and increasing simulation time. To avoid these draw-

backs, we instead implement network communication in proxies.

SimBricks proxies connect to local component simulators through

existing shared memory queues and forward messages over the

network to their peer proxy which operates symmetrically. This

requires an additional processor core for the proxy on each side, but

is fully transparent to component simulators and does not increase

their communication overhead.

5.5 Simulator Synchronization Mechanism

To ensure accurate interconnection of component simulators, we de-

sign a synchronization mechanism that that guarantees correctness

while minimizing overhead, even when scaling to large simulations.

5.5.1 Naive Synchronization Mechanisms do not Scale
A conceptual straw-man for synchronizing components are global

barriers at each time step, keeping simulators in lockstep. When

components are connected by communication links with non-zero

latency, frequency of global barriers can be reduced by dividing

simulation time into epochs no larger than the lowest link latency.

Global barriers are only required at epoch boundaries, since all

cross-component events will be delivered after the end of the cur-

rent epoch [1, 42, 47]. Unfortunately, epoch-based synchronization

still relies on non-scalable global barriers across all simulators, with

the barrier frequency determined by the lowest link latency in the

whole simulation, incurring substantial synchronization overhead.

5.5.2 Scalable synchronization in SimBricks
We avoid global synchronization while guaranteeing accurate simu-
lator interconnection by relying on properties specific to the Sim-

Bricks architecture. Fig. 5 shows pseudocode for the SimBricks

synchronization protocol.

Enforcing message processing times is sufficient. In SimBricks, all

communication between simulators is explicit through message

passing along statically created point-to-point channels. Thus, the

only requirement for accurate simulation is that messages are pro-
cessed at the correct time [10, 11]. Additional synchronization does

not affect the simulation, as simulators cannot otherwise observe

or influence each other. To enforce this guarantee, senders tag

messages with the time when the receiver must process the mes-

sage. For determinism, simulators with multiple peers must order

messages with identical timestamps consistently.

Pairwise synchronization is sufficient. All SimBricksmessage pass-

ing channels are point-to-point and statically determined by the

simulation structure. This is where we differ from most prior syn-

chronization schemes: they do not assume a known topology and

thus require global synchronization. SimBricks only needs to im-

plement pairwise synchronization, between each simulator and its

a priori known peers [10].

Per-channel message timestamps are monotonic. Our message

queues deliver messages strictly in order. Since each SimBricks

connection between two simulators incurs a propagation latency

Δ𝑖 > 0, a message sent at time 𝑇 over interface 𝑖 arrives at 𝑇 +
Δ𝑖 . Assuming simulator clocks advance monotonically, message

timestamps on each channel are thus monotonic.

Message timestamps ensure correctness. A corollary of monotonic

timestamps is that amessagewith timestamp 𝑡 is an implicit promise

that no messages with timestamps < 𝑡 will arrive on that channel

later. Therefore, once a simulator receives messages with times-

tamps ≥ 𝑇 from all its peers, it can safely advance its clock to 𝑇

without more coordination.

Ensuring liveness with sync messages. The above conditions en-
sure accuracy, but do not guarantee liveness. Simulations can only

make progress when every channel carries at least one message in

each direction in every Δ𝑖 time interval [10, 11]. To ensure progress,

we introduce SYNC messages that simulators send if they have not

sent any messages for 𝛿𝑖 ≤ Δ𝑖 time units. SYNC messages allow

connected peers to advance their clocks in the absence of data mes-

sages. In our simulations we set 𝛿𝑖 = Δ𝑖 ; lower values of 𝛿𝑖 are

6
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procedure Init

for if in interfaces do

SyncTimer(if)

msg← PollMsg(if)

Reschedule(msg.timestamp, RxTimer, msg, if)

procedure SyncTimer(if)

msg← AllocMsg(if)

msg.type← SYNC
SendMsg(msg)

procedure RxTimer(msg, if)

if msg.type ≠ SYNC then
ProcessMsg(msg)

msg← PollMsg(if)

Reschedule(msg.timestamp, RxTimer, msg, if)

procedure SendMsg(msg, if)

msg.timestamp← 𝑇 + Δ
if

EnqeueMsg(msg, if)

Reschedule(𝑇 + 𝛿
if
, SyncTimer)

Figure 5: SimBricks synchronization protocol pseudocode

for a discrete event-based simulator. Reschedule schedules

a callback for the specified time, cancelling earlier instances.

ProcessMsg and SendMsg interface with the upper layer

PCI or Network protocol. Δ
if
is the link latency and 𝛿

if
the

synchronization interval.

valid, but we have not found configurations where the benefit of

more frequent clock advances outweighed the cost of sending and

processing additional SYNC messages.

Link latency provides synchronization slack. Non-zero link laten-

cies further reduce synchronization overhead, since not even peer

simulators need to execute in lockstep. Specifically, a message sent

at 𝑇 allows its peer to advance to 𝑇 + Δ𝑖 . At that point, the peer’s
clock is guaranteed to lay between𝑇 −Δ𝑖 (otherwise the local clock
would not be at 𝑇 ) and 𝑇 + Δ𝑖 . Different channels in a SimBricks

configuration can use different Δ𝑖 values. While synchronized sim-

ulations are fundamentally only as fast as the slowest component,

this slack improves efficiency by absorbing small transient variation

in simulation speed, without immediately blocking all simulators.

6 Implementation

SimBricks is implemented in 4206 of C/C++ and 2102 lines of Python

for core functionality, 5348 lines for adapters in existing simulators,

and 4556 lines for new simulators we built (details in §A.3).

6.1 Core SimBricks Components

Libraries. To reduce integration effort for simulators, we develop

a common library that implements the SimBricks messaging inter-

faces, and helper functions to parse and generate synchronization

messages. We also implement a helper library with common C++

components for behavioral NIC simulators (nicbm) that we use for
our NIC simulators below.

Proxies. To scale out SimBricks simulations, we have implemented

two proxies, one uses TCP sockets for network communication and

the other one uses RDMA. Both implement adaptive batching by

forwarding multiple messages at once if more than one is available

in the queue. The RDMA proxy minimizes communication latency

and CPU overhead by directly writing messages to remote queues.

Orchestration. Configuring and running SimBricks simulations

is a challenge due to the multitude of interconnected components

involved. We streamline simulation setups with our orchestration

framework. Users can assemble complete simulations in compact

python scripts, and the framework is responsible for running indi-

vidual components (details in §A.1).

6.2 Host Simulation

We have integrated two host simulators, gem5 and QEMU, that are

capable of running unmodified operating systems and applications.

For both, we implement the SimBricks adapter as a regular PCIe

device within the simulator’s device abstractions.

gem5. gem5 is a flexible full system simulation with configurable

level of detail for memory and CPU. We use version v20.0.0.1, ex-

tend it with a patch for Intel DDIO support [2], and implement

support for the functional and timing memory protocols. The func-

tional protocol is blocking, i.e., it expects device accesses and DMA

to synchronously return results, and does not model timing. The

timing protocol models accesses as asynchronous request and re-

sponse messages. To reduce simulation time, we can configure

gem5 to boot up with a fast functional CPU, and then switch to a

detailed synchronized CPU. We also implement an Ethernet adapter

to connect the built-in NICs in gem5 to SimBricks for comparison.

QEMU. We use QEMU version 5.1.92 with KVM CPU acceler-

ation for fast functional simulation. We also implement support

for synchronized simulation with instruction counting (icount),
in which QEMU controls the rate of instruction execution relative

to a virtual clock. The key challenge is modelling MMIO delays,

as QEMU’s device interface does not model timing and expects

accesses to return immediately. We work around this by aborting

execution of the instruction from the MMIO handler and stopping

the virtual CPU, only re-activating it when the SimBricks PCIe

completion event arrives. QEMU will then re-try the instruction.

Unfortunately we have found that this QEMU version is no longer

fully deterministic even with instruction counting.

6.3 NIC Simulation

We integrate three NIC simulators, a detailed hardware RTL model,

and two less detailed but faster behavioral simulators.

Corundum RTL. To demonstrate realistic RTL device simulation,

we use the unmodified Verilog implementation of the open source

Corundum FPGA NIC [16]. We use Verilator [54] to simulate the

interfacemodule implementing Corundum’s data path, including

RX, TX, descriptor queues, checksums, and scheduling. As Verilator

cannot simulate vendor IP Corundum uses for PCIe, DMA, and

Ethernet, we implement them directly in the C++ testbench.

Corundum behavioral. To enable a fair comparison with other

simulators, we also implement a fast behavioral simulator for Corun-

dum in C++. Both Corundum simulators are fully compatible with

the unmodified upstream Linux driver [17].
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Intel i40e behavioral. Many recent network systems require a

modern NIC compatible with Linux or kernel-bypass frameworks

such as DPDK [15]. We implement a behavioral simulator for the

common i40e Intel 40G X710 NIC. This simulator is compatible

with unmodified drivers, and it implements important NIC features

such as multiple descriptor queues, TCP and IP checksum offload,

receive-side scaling, large segment offload, interrupt moderation,

and support for MSI and MSI-X.

6.4 Network Simulation

ns-3 and OMNeT++. To integrate with ns-3.31, we implement

a SimBricks Ethernet adapter class extending NetDevice, the ns-
3 base abstraction for host network interfaces. When receiving

packets from our Ethernet interface, the adapter pushes them to

the connected network channel, and vice-versa. The adapter also

implements our synchronization protocol (Fig. 5). We integrate

OMNeT++ with INET [21] analogously.

Ethernet switch. We also implement a fast simulator for a basic

Ethernet switch. In the simulation loop, the switch polls packets

from each port, performs MAC learning, switches each packet to

the corresponding egress port(s) according to the MAC table, and

sends synchronization messages as necessary.

Tofino. We integrate the Tofino [24] simulator provided by In-

tel [23], as the most popular programmable switch. This simula-

tor includes a cycle accurate model of the switch pipeline and an

approximate model for queuing. The simulator is closed source,

communicates through Linux Kernel virtual Ethernet interfaces

(veth), and only allows minimal control over timing. To implement

a synchronized adapter, we parse the output log of the simulator

and generate packet timestamps accordingly.

Menshen RTL. Finally, we integrate the Verilog implementation

of the Menshen RMT pipeline [58] using Verilator and the C++

Ethernet MAC adapter we implemented for Corundum.

6.5 Limitations

Incompatible simulation models. We do not support the gem5

atomic memory protocol where memory operations, including

DMA and MMIO, are implemented as synchronous function calls

that return how long the operation should take. This is incompatible

with SimBricks’s asynchronous PCIe interface. For example, while

the SimBricks PCIe adapter is waiting for an MMIO completion

message, no other events, such as incoming DMA requests can be

scheduled and executed.

Single-core hosts. Both gem5 and synchronized QEMU simulate

multiple cores sequentially, resulting in a super-linear increase in

simulation time. As host simulator internals are orthogonal, we

pragmatically opt to restrict our evaluation to single-core hosts.

The scalable x86 simulators we found [18, 39, 49] only simulate ap-

plications and cannot run operating systems, precluding end-to-end

simulation. As future work, we envision applying our techniques

to scale out existing full system simulators, as modern multi-cores

are essentially networked systems [6] with message latencies.

7 Evaluation

We now evaluate if SimBricks meets our design goals (§4.1):

• Can SimBricks modularly combine simulators into end-to-
end simulations? How do these simulations perform? (§7.2)

• How efficient is the SimBricks synchronization mechanism?

How does the overhead compare to prior approaches? (§7.3.1)

• Can SimBricks enable faster simulations by breaking down

large simulators into smaller, parallel simulators? (§7.3.2)

• How do larger SimBricks simulations scale on a single physi-

cal host and distributed across multiple physical hosts? (§7.4)

• Does SimBricks accurately combine simulators? (§7.5)

• Are SimBricks simulations deterministic? (§7.6)

7.1 Experimental Setup

Unless otherwise stated we use the following setup: We run sim-

ulations on physical hosts with two 22-core Intel Xeon Gold 6152

processors at 2.10GHz with 187GB of memory, hyper-threading

disabled, and 100Gbps Mellanox ConnectX-5 NICs.
1
All simulated

hosts have a single core and 8GB of memory, and each runs Ubuntu

18.04 with kernel 5.4.46 where we disabled unneeded features and

drivers to reduce boot time. All device drivers and applications are

unmodified. For synchronized QEMU we set a clock frequency

of 4GHz. For gem5, we use DDR4_2400_16x4 memory and the

TimingSimple CPU model, which simulates an in-order CPU with

the timing memory protocol, and configure cache sizes and laten-

cies to match those of the testbed. We set gem5 parameters (e.g.,

in-order CPU clock frequency of 8 GHz
2
) to achieve the same effec-

tive instruction execution performance as a representative physical

testbed [28], for a Linux networking benchmark at 1.3 cycles/inst =

0.43 ns/inst. Further, we set the PCIe latency, Ethernet link latency

and synchronization interval all to 500 ns, network bandwidth to

10Gbps, and frequency for the Corundum RTL model to 250MHz.

7.2 SimBricks is Modular

Navigating speed-accuracy trade-offs. We start by evaluatingmod-

ular combinations of component simulators in SimBricks. As awork-

load, we use the netperf TCP benchmark to run a 10s throughput

test (TCP_STREAM) followed by a 10s latency test (TCP_RR) between
two simulated hosts. We focus on four configurations for common

systems research use-cases: debugging and performance evaluation

of hardware and software prototypes. Debugging HW& SW is most

productive when fast and interactive, while accurate performance

is not the primary concern. Here we combine QEMU with KVM

for fast host simulation, our fast switch model, and either the i40e
NIC for SW testing or Verilator with Corundum as a HW example.

Performance evaluation on the other hand requires accurate results,

but it can tolerate longer simulation times. We use a detailed gem5

host simulator and ns-3 for SW performance evaluation, while

choosing a less detailed but time-synchronized QEMU simulator

for benchmarking our HW prototype.

Our results in Tab. 1 confirm the expected trade-off between

simulation time and simulator detail: simulation times range from

31s to 18 hours. The results show that, SimBricks can effectively

help navigate this trade-off by only using detailed simulators when

details matter for the use-case. Even combining fast QEMU-kvm

1
The testbed only affects simulation time and unsynchronized experiments.

2
Gem5 also supports an out-of-order CPU, but with 4 − 6× higher simulation time, so

we use the TmingSimple CPU as a compromise.
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Use-case netperf Sim.

Simulator Combination T’put Latency Time

SW debugging 4.37G 71 𝜇s 00:00:32

QEMU-kvm + behavioral i40e NIC + behavioral switch

SW perf. evaluation* 8.92G 20 𝜇s 12:49:46

gem5 + behavioral i40e NIC + ns-3

HW debugging 81M 3.4ms 00:00:31

QEMU-kvm + Corundum Verilog + behavioral switch

HW perf. evaluation* 6.55G 32 𝜇s 04:13:10

QEMU-timing + Corundum Verilog + behavioral switch

Table 1: SimBricks configurations for different use-cases,

withmeasured simulation time and application performance.

Configurations with * are synchronized and deterministic,

while the others are unsynchronized emulation.

with an unsynchronized RTL simulation is fast enough (31s) to

test and debug the full system. Modularity also allows us to late

bind simulator choices, e.g. if we later realize that QEMU-timing

is not sufficiently accurate, we can replace it with gem5 without

additional changes.

All combinations are functional. Besides these four configura-

tions, we also evaluated the full cross-product of simulator choices

(§6) and confirm SimBricks supports all combinations (subset of

performance results in §A.4).

SimBricks interfaces are general. SimBricks interfaces are generic

and serve as narrow waists between simulators. To further demon-

strate its generality, we extracted gem5’s e1000 Intel NIC model,

adapted it to SimBricks’s PCIe interface without other modifica-

tions, and verified that it is compatible with gem5 and QEMU. To

show that SimBricks’s PCIe interface generalizes beyond NICs, we

have adapted FEMU [31]’s NVMe SSD model from their QEMU fork

into a separate simulator. This simulator also works in combination

with QEMU and gem5.

7.3 SimBricks is Fast

We now show SimBricks does not significantly slow down simula-

tors through synchronization, and can even speed up simulations

through decomposition into parallel components.

7.3.1 Synchronization

Overhead. We measure synchronization overhead by compar-

ing simulation time for gem5 standalone and in SimBricks. The

experiment does not use the network, but for synchronization, we

connect the gem5 to i40e NIC in SimBricks and to our switch. We

first compare a low-event workload in gem5: executing sleep 10.
The simulation takes 2.25min standalone and 2.91min in SimBricks,

a 30% overhead. This is the worst case – gem5 is almost exclusively

handling SimBricks synchronization events (every 500 ns), as the

CPU is mostly halted. For a high-event workload we use dd to read

from /dev/urandom to keep the CPU busy. This simulation takes

100.26min standalone and 101.06min in SimBricks, a mere 0.8%

overhead. SimBricks incurs manageable synchronization overhead,
and does not significantly slow down already slow simulations.

Comparison to dist-gem5. Next, we compare to dist-gem5 [42]

which interconnects multiple gem5 instances and employs conven-

tional epoch-based global synchronization over TCP. We configure

2 to 32 instances of gem5 that communicate pairwise using iperf,

through the e1000 NIC in gem5 and a single switch. For SimBricks

we use our gem5 Ethernet adapter to connect to our switch model.

Our simulation time measurements in Fig. 6 show that SimBricks is
more efficient than dist-gem5, especially with increasing scale. Sim-

Bricks reduces simulation time by 27% for 2 hosts, and by 74% for

32 hosts.

Sensitivity to link latency. SimBricks synchronization overhead

is linked with the configured link latency, which places a lower

bound on sync message frequency. We measure how link latency

affects synchronization overhead, with a pair of gem5 hosts run-

ning netperf for 1 s of throughput and latency measurements each,

connected to i40e NICs and a shared switch. We vary the config-

ured PCIe latency and sync interval, and report our results in Fig. 9.

While synchronization time does increase, lowering the link latency
by three orders of magnitude (from 1 𝜇s to 1 ns) only increases sim-
ulation time by 59%, demonstrating that SimBricks can effectively

parallelize simulations across low-latency interconnects.

7.3.2 Decomposition for Parallelism

Extracting NIC from gem5. When connecting synchronized sim-

ulators, the best SimBricks can achieve is to not slow them down

beyond the slowest component simulator. However, SimBricks en-

ables developers to decompose monolithic simulators into con-

nected components (§7.2) running in parallel, thereby accelerating

simulation.We evaluate this by comparing two gem5 configurations

in SimBricks: first, gem5 with the built-in e1000 NIC connected via

our Ethernet adapter, and second, gem5 connected to our i40e NIC
model through the PCIe interface. In both cases we run a pair of

hosts connected to our switch model. The first configuration takes

350 minutes, while the second only takes 138 minutes: Parallelism
from the external NIC simulator reduces simulation time by 60%.

Network simulator as scalability bottleneck. Network simulators

are potential scalability bottlenecks in SimBricks, as they often

connect many NICs, while hosts and NICs typically only connect

one and two peers, respectively. To demonstrate this bottleneck, we

develop a packet generator as a dummy NIC that implements the

SimBricks Ethernet interface and the synchronization mechanism.

The dummy NIC simply injects packets at a configured rate. We

now measure simulation time for 2 and 32 dummy NICs connected

to one switch for 1 second of virtual time. First we set the packet

rate to 0 (to only measure synchronization overhead) and measure

an increase from 2.6 s to 17.6 s of simulation time. Next, we set the

packet rate to 100Gbps on each NIC, and measure the simulation

time increases from 12.6 s to 211.6 s. This experiment confirms that a
single network simulator can become a bottleneck for fast simulations.
We have so far not observed this outside of this microbenchmark.

Parallelizing network simulation. To address this bottleneck in

SimBricks, we can decompose the network into multiple network

simulators carved up at natural boundaries (e.g. switches or groups

thereof). We demonstrate this by modifying the microbenchmark

to divide the 32 hosts to 4 “ToR” switches, connected through a fifth

“core” switch.With this configuration, the simulation time for packet
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Figure 8: Distributed scalability.

rate 0 is 9.6 s down by 45% compared to the single switch setup,

and 96.8 s at 100Gbps packet rate, a 53% reduction. Decomposing
network simulators, therefore, can effectively reduce simulation time
at scale.

7.4 SimBricks is Scalable

We now evaluate scalability for local and distributed simulations.

7.4.1 Scaling Up
First, we measure simulation time as we vary the number of sim-

ulated gem5 hosts and i40e NICs connected to a single switch,

running on a single physical host. We set up one server and a vari-

able number of client hosts, running the same UDP iperf benchmark.

To avoid overloading the server, we fix the aggregate throughput

to 1Gbps. The results in Fig. 7 show the simulation time increases

with the number of clients, from 138min with 2 hosts to 205min

with 21 hosts (48% increase).

Surprisingly, the longer simulation time is not caused by scal-

ability bottlenecks in SimBricks synchronization. Instead, we dis-

covered that this increase is due to thermal throttling of our host

CPU slowing down all cores as more active. To confirm this, we

run multiple independent instances of the 1-client experiment and

measure how this affects simulation time. When running 4 inde-

pendent instances of the 2-host simulations (5 cores each), using

a total of 20 cores in the same NUMA node, the simulation takes

171min. This matches the runtime of the 10-host simulation above,

which uses 21 cores in total. We conclude that SimBricks scales at
least to the moderate cluster sizes typical for many of our evaluations.

7.4.2 Scaling Out
We now move on to SimBricks simulations running across multiple

physical hosts, using our RDMA and TCP proxies (Fig. 11).

Overhead of distributed simulation. First we compare perfor-

mance for local simulations to equivalent distributed simulations

with the SimBricks proxies, to measure overheads. We use two

qemu-kvm hosts running netperf connected to i40e NICs which

connect to the same switch. Locally, this unsynchronized simula-

tion yields a throughput of 4.4 Gbps, and a latency of 71 𝜇s. Next we

distribute the simulation by running one pair of QEMU and NIC on

a second server and proxying the Ethernet connection to the switch

running locally. With the sockets proxy the latency increases to

305 𝜇s and throughput remains constant, and with RDMA both

remain constant. Next we measure simulation time for the same

configuration but with QEMU timing and gem5, and find that sim-

ulation time does not change with either proxy. We conclude that

SimBricks proxies are no bottleneck for synchronized simulations.

Large-scale memcache cluster. To evaluate scalability to larger

systems, we next run multiple distributed simulations ranging from

40 to 1000 simulated hosts, on 1 to 26 physical servers. We run

these simulations on Amazon ec2 c5.metal (spot) instances, with

96 hyperthreads each, and 20Gbps network connectivity in a single

proximity placement group. We simulate a varying number of racks

of 40 hosts with i40e NICs and a top of rack (ToR) switch each, that

then connect to a single core switch, as shown in Fig. 11. We assign

the core switch and each rack to a dedicated server. A separate

sockets proxy pair (Amazon ec2 does not offer RDMA) connects

each ToR to the core switch. We run memcached on half of the hosts

in each rack, and the memaslap client on the other half. Each client

randomly connects to the 20 servers on the same rack, and to 20

random servers in other racks.

Fig. 8 shows the measured simulation time for 10 s of virtual time

as we increase the number of hosts. From one rack and 40 hosts to

25 racks and 1000 hosts, simulation time with gem5 hosts increases

by 13.8% from 15.5 h, to 17.6 h. With QEMU-timing, simulation time

increases from 2.2 h to 5.6 h by 2.5×. With profiling we found the

cause to be QEMU’s dynamic binary translation. When an instance

misses in its code cache and has to recompile a block, the instance

blocks for a while. While rare, at scale these occurrences growmore

frequent, and slow down other hosts due to synchronization. We

conclude that SimBricks scales to simulate systems with 100s of hosts.

7.5 SimBricks is Accurate

We now show SimBricks Ethernet and PCIe interfaces accurately
connect and synchronize simulators. For Ethernet, we first run a

pure ns-3 simulation of two communicating nodes connected by

a network link with our default parameters, and log packet times-

tamps on each node. Next, we repeat the experiment with two

ns-3 instances each containing one node and a SimBricks Ethernet

adapter, and connect the two. For PCIe, we run two gem5 instances

running netperf with the built-in e1000 NIC connected through the

SimBricks Ethernet adapter to a switch. We rerun this experiment

with our standalone version of gem5’s e1000 connected to both

simulators through the SimBricks PCIe adapter. In both cases we

find that the timestamped logs match exactly, demonstrating the

correctness of our synchronization.
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7.6 SimBricks is Deterministic

Finally, we verify that SimBricks simulations with deterministic com-
ponent simulators yields deterministic end-to-end simulations. To
this end, we have repeated the two configurations combining only

deterministic simulators in Tab. 1 5 times on different machines.

We then compared event timestamps in the simulation logs and

found that they match exactly.

8 SimBricks for System Evaluation

Finally, we show SimBricks end-to-end simulations can aid eval-

uation, by providing more visibility and control than a physical

testbed, and by accurately simulating unavailable hardware.

8.1 Use-Case: NIC Hardware Architecture

Using Corundum as an example, we show that SimBricks simu-

lations can provide insights that are challenging to obtain from

physical testbeds. The original Corundum evaluation shows sig-

nificantly lower throughput for a 1500B MTU compared to the

ConnectX-5 NIC they compare to. While developing our Corun-

dum simulators, we found the root cause reason for this. Corundum

relies on reading the head index registers of receive descriptor

queues to identify new entries, while for most other NICs, drivers

instead directly poll descriptors in memory. MMIO reads stall the

processor until the device returns a result, while with DDIO descrip-

tor reads typically hit in the L3 cache. For CPU-bound workloads

this degrades performance.

Leveraging simulation visibility & flexibility. Our debugging ef-
fort was greatly facilitated by the simulator logs provided by Sim-

Bricks. Synchronized simulations can produce detailed logs without

affecting system behavior. We leveraged this to trace PCI activity,

NIC activity, and CPU activity, and combined those into an end-to-

end view of the RPC latency. We further confirm this by doubling

the simulated PCIe latency to 1 𝜇s in gem5 with the Corundum and

Intel behavioral simulators. When PCIe latency doubles, Corundum

throughput reduces by 21.2%, while the Intel NIC throughput re-

mains unchanged. Our experience demonstrates that simulators can
offer greater visibility and the flexibility to change key parameters
that are fixed in physical systems.

8.2 Use-Case: In-Network Processing

Work leveraging programmable switches for application acceler-

ation requires end-to-end measurements for a meaningful eval-

uation. However, many of these works rely on functionality not

(yet) available in off-the-shelf hardware at publication time. We use

Network-Ordered Paxos (NOPaxos) [33] as an example to demon-

strate that SimBricks can serve as a virtual testbed for such systems.

NOPaxos introduces a new network-level primitive, the Ordered Un-

reliable Multicast (OUM), which requires a single sequencer device

in the network. Implementing the sequencer in a programmable

network switch offers the best performance. However, as the re-

quired network hardware was not yet available, the authors relied

on sequencer emulation on a network processor or an end-host

implementation. We implement switch support for OUM both in

ns-3 and the now available Tofino simulator, and combine them

with gem5 and the Intel NIC. On the simulated hosts, we run the

unmodified NOPaxos open source code.

Reproducing results. We use SimBricks to simulate two NOPaxos

configurations: a P4 switch sequencer running on Tofino, and an

end-host sequencer implementation. Similar to the original work,

we also simulate the classic Multi-Paxos state machine replication

protocol. We compare the throughput-latency curves (Fig. 10) to

figure 6 in the NOPaxos paper, where the switch sequencer configu-

ration of NOPaxos achieves a latency of 110 𝜇s, while the end-host

sequencer configuration has 35% higher latency; both configura-

tions achieve similar throughput (230 K/s). The original paper also

shows that NOPaxos (switch sequencer) achieves a 370% increase

in throughput and a 54% reduction in latency compared to Multi-

Paxos. In SimBricks we find a lower baseline latency of 43 𝜇s for the

switch sequencer setup, and 23% higher latency for the end-host

sequencer configuration. This is expected as the authors used a

slower network processor to emulate switch functionality. We also

find that both systems saturate at the same throughput of 78 K/s.

The lower throughput is because we are measuring on a single-core

host, where application and packet processing share a core. We con-

firmed this in a physical testbed by disabling all but one core, and

measured throughput within 10%. When comparing to Multi-Paxos

running in SimBricks, NOPaxos with switch sequencer attains a

270% throughput increase and 40% latency reduction. We conclude

that SimBricks can accurately evaluate in-network processing systems.
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9 Looking Forward

Validation. To obtain representative simulation results, users

have to validate simulators and configuration parameters against

physical testbeds. While SimBricks cannot avoid this, we argue

that our approach can reduce validation effort. Instead of validat-

ing each combination of simulators, components can be validated

individually and then composed. This enables users to combine

previously validated component configurations into a full system.

We propose a public repository of validated component simulator

configurations to simplify re-use. To ensure validity of these con-

figurations over time, we imagine a continuous-integration system,

periodically re-running configurations and recording the results.

Beyond networking. While we evaluate SimBricks for network

systems, our approach generalizes beyond networking. We have

already demonstrated that our PCIe interface can support an NVMe

simulator. Going forward, simulating PCIe attached accelerators,

which are also attracting growing interest in our community, should

not require changes to SimBricks. SimBricks can also be easily ex-

tended with additional components or interfaces, such as CXL [14].

We expect the emergence of further use-cases as architecture and

systems researchers continue to investigate specialized hardware.

Evaluating ASIC designs. Finally, we see evaluation of systems

that include new ASIC components as a driving use-case in the

future. While small ASIC designs with lower clock rates can often

be evaluated in physical testbeds with FPGAs, this is not possible

for larger designs or designs with fast clock speeds. SimBricks, on

the other hand, can simulate ASIC RTL with arbitrary frequencies,

although FPGA accelerated RTL simulations [26] may be required

for manageable simulation times.

10 Related Work

Parallel & distributed simulation. dist-gem5 [42] and pd-gem5 [1]

connect multiple gem5 instances for parallel and distributed sim-

ulations and synchronize with global barriers. Graphite [39] also

parallelizes a multi-core simulation across cores and machines,

but uses approximate synchronization where causality errors are

possible. Similar to gem5, Simics [37] also supports full system simu-

lation and runs unmodified operating systems and applications, and

multiple Simics processes can be connected to simulate networked

systems. SimBricks connects multiple different simulators together

using fixed interfaces, and synchronizes them accurately with a

synchronization protocol that leverages the simulation structure.

ns-3 adds support for distributed simulation in version 3.8 [45].

It uses a similar conservative look-ahead protocol with explicit

synchronization for correctness,and relies on the Message Passing

Interface (MPI) to connect multiple ns-3 processes. MPI decouples

ns-3 from the choice of message transport, directly supporting

distributed simulations over various interconnects, but incurs the

cost of this abstraction in every process. SimBricks instead closely

couples synchronization and adapters to our optimized sharedmem-

ory queues (implementation is inlined from shared headers), mini-

mizing communication overhead in simulator adapters. SimBricks

scales out through proxies that decouple individual simulators from

the choice and overhead of distributed transport (RDMA, sockets),

at the cost of typically one core per physical simulation host.

Co-simulation of multiple simulators. gem5 supports the integra-

tion of systemC code [38] to implement hardwaremodels, by linking

them into the gem5 binary and embedding the systemC event loop

with the gem5 event loop. SimBricks instead interconnects multi-

ple heterogeneous simulators with potentially completely different

simulation models. The Structural Simulation Toolkit (SST) [48] is

a modular simulation framework for HPC clusters, uses a parallel

discrete event simulation with global epoch synchronization, and

defines common interfaces to link in various component simulators.

Unlike SimBricks, SST requires deep integration of simulators into

one simulation loop resulting in integration challenges. SST does

also not define fixed component interfaces for specific components,

instead compatibility is up to individual simulators.

Full system emulation. Prior work on emulation has provided

a path closer to end-to-end evaluation without matching physi-

cal testbeds. Mininet [30] emulates network topologies and hosts

through Linux networking and container features, running real

applications and using the host kernel for protocol processing. ns-3

direct code execution (DCE) [56] integrates a Linux Kernel instance

as a libOS into ns-3 and connects its network interface to ns-3

topologies. Both systems offer lower run-times compared to Sim-

Bricks, but at the cost of not modeling low-level details, such as

caches or PCIe interactions with devices, and other bottlenecks on

the physical system. Finally, other work has relied on emulating

NIC or switch functionality on dedicated processors, while run-

ning the rest of the system natively [27, 33]. Simulations incur

higher run-times but can control the level of details in the model,

and enable adjustment of relative performance of components by

operating on virtual time.

11 Conclusion

We described and evaluated SimBricks, a novel modular frame-

work enabling full end-to-end simulation of network systems by

combining multiple tried-and-true simulators for different system

components. SimBricks is fast and scalable, and accurately and

deterministically connects and synchronizes simulators. We also

demonstrated SimBricks can replicate key findings from prior work,

including congestion control, in-network compute, and NIC hard-

ware architecture. End-to-end simulations are a valuable tool for

systems research, especially in the era of specialized hardware.

Acknowledgments

We would like to thank the anonymous reviewers for their com-

ments and feedback, and the anonymous artifact evaluation com-

mittee for reviewing our artifact. We also thank Jeff Mogul, Peter

Druschel, Simon Peter, Trevor E. Carlson, Aastha Mehta, Ming Liu,

Katie Lim, Pratyush Patel, for their input on earlier drafts of this pa-

per. Keon Jang contributed the dctcp experiment idea and physical

testbed implementation, and joined many discussions on SimBricks.

We thank Jonas Kaufmann for his help with preparing our artifact

and open source release, and Zhiqiang Xie for profiling SimBricks.

Finally, we thank Huaicheng Li for help with integrating FEMU, and

Tao Wang and Anirudh Sivaraman for help with Menshen. Jialin Li

is supported by a MOE Tier 1 grant A-0008452-00-00 and a ODPRT

grant A-0008089-00-00.

12



SimBricks: End-to-End Network System Evaluation with Modular Simulation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

References

[1] Mohammad Alian, Daehoon Kim, and Nam Sung Kim. 2016. Pd-Gem5: Simula-

tion Infrastructure for Parallel/Distributed Computer Systems. IEEE Computer
Architecture Letters 15, 1 (Jan. 2016), 41–44.

[2] Mohammad Alian, Yifan Yuan, Jie Zhang, Ren Wang, Myoungsoo Jung, and

Nam Sung Kim. 2020. Data Direct I/O Characterization for Future I/O System

Exploration. In 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 160–169. https://doi.org/10.1109/ISPASS48437.

2020.00031

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.

Data Center TCP (DCTCP). In 2010 ACM SIGCOMM Conference on Data Commu-
nication (New Delhi, India) (SIGCOMM).

[4] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,

David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport

Protocols in High-Speed NICs. In 17th USENIX Symposium on Networked Systems
Design and Implementation (Santa Clara, CA) (NSDI).

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca

Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.

2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems.

In 22nd ACM Symposium on Operating Systems Principles (Big Sky, MT) (SOSP).
[6] Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh Singhania, Timo-

thy Roscoe, Paul Barham, and Rebecca Isaacs. 2009. Your computer is already

a distributed system. Why isn’t your OS?. In 12th Workshop on Hot Topics in
Operating Systems (Monte Verità, Switzerland) (HOTOS).

[7] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.

Levy. 1991. User-Level Interprocess Communication for Shared Memory Multi-

processors. ACM Transactions on Computer Systems 9, 2 (May 1991), 175–198.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7.

[9] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:

Fast Programmable Match-action Processing in Hardware for SDN. In 2013 ACM
SIGCOMM Conference on Data Communication (Hong Kong, China) (SIGCOMM).

[10] Randal Everitt Bryant. 1977. Simulation of packet communication architecture.
Master’s thesis. Massachusetts Institute of Technology, Laboratory for Computer

Science.

[11] K. Mani Chandy and Jayadev Misra. 1979. Distributed simulation: A case study

in design and verification of distributed programs. IEEE Transactions on software
engineering SE-5, 5 (1979), 440–452.

[12] Jianwei Chen, Murali Annavaram, andMichel Dubois. 2009. SlackSim: A Platform

for Parallel Simulations of CMPs on CMPs. SIGARCH Computer Architecture
News 37, 2 (July 2009).

[13] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik,

Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac

Keslassy, Ariel Orda, and Tom Edsall. 2017. dRMT: Disaggregated Programmable

Switching. In 2017 ACM SIGCOMM Conference on Data Communication (Los

Angeles, CA) (SIGCOMM).
[14] CXL Consortium. 2020. Compute Express Link (CXL). https://www.

computeexpresslink.org/spec-landing. Revision 2.0.

[15] DPDK Project. 2022. Data Plane Development Kit. http://www.dpdk.org/. Re-

trieved Feb 2, 2022.

[16] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. 2020. Corun-

dum: An Open-Source 100-Gbps NIC. In 28th IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines (Fayetteville, AR)
(FCCM).

[17] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. 2022. Corun-

dum GitHub Repository. https://github.com/corundum/corundum. Retrieved

Feb 2, 2022.

[18] Yaosheng Fu and David Wentzlaff. 2014. PriME: A parallel and distributed

simulator for thousand-core chips. In 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (Monterey, CA) (ISPASS).

[19] Richard M. Fujimoto. 1999. Exploiting Temporal Uncertainty in Parallel and

Distributed Simulations. In Proceedings of the Thirteenth Workshop on Parallel
and Distributed Simulation (Atlanta, GA) (PADS).

[20] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.

Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-Architecting Datacenter

Networks and Stacks for Low Latency and High Performance. In 2017 ACM
SIGCOMM Conference on Data Communication (Los Angeles, CA) (SIGCOMM).

[21] INET Authors. 2022. INET Framework. https://inet.omnetpp.org/. Retrieved Feb

2, 2022.

[22] Intel Corporation. 2020. Intel Ethernet Controller X710/ XXV710/XL710

Datasheet. https://cdrdv2.intel.com/v1/dl/getContent/332464. Revision 3.7.

[23] Intel Corporation. 2022. Intel P4 Studio. https://www.intel.com/content/

www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-

studio.html. Retrieved Feb 2, 2022.

[24] Intel Corporation. 2022. Intel Tofino Series Programmable Switch

ASIC. https://www.intel.com/content/www/us/en/products/network-

io/programmable-ethernet-switch/tofino-series.html. Retrieved Feb 2, 2022.

[25] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt

Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve

Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle

Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo

Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of

a Tensor Processing Unit. In 44th Annual International Symposium on Computer
Architecture (Toronto, ON, Canada) (ISCA).

[26] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,

Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,

Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach,

and Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out

System Simulation in the Public Cloud. In 45th Annual International Symposium
on Computer Architecture (Los Angeles, CA) (ISCA).

[27] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and

Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.

In 21st International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Atlanta, GA) (ASPLOS).

[28] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krish-

namurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.

In 14th ACM European Conference on Computer Systems (Dresden, Germany)

(EuroSys).
[29] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian

Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,

Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple

and Effective for Congestion Control in the Datacenter. In 2020 ACM SIGCOMM
Conference on Data Communication (Virtual Event, USA) (SIGCOMM).

[30] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:

Rapid Prototyping for Software-Defined Networks. In 10th ACM Workshop on
Hot Topics in Networks (Monterey, CA) (HotNets).

[31] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,

Matias Bjørling, and Haryadi S. Gunawi. 2018. The CASE of FEMU: Cheap, Ac-

curate, Scalable and Extensible Flash Emulator. In 2018 USENIX Annual Technical
Conference (Boston, MA) (ATC).

[32] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Consis-

tent Transactions Using In-Network Concurrency Control. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17). Association for Com-

puting Machinery, Shanghai, China. https://doi.org/10.1145/3132747.3132751

[33] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.

2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network Order-

ing. In 12th USENIX Symposium on Operating Systems Design and Implementation
(Savannah, GA) (OSDI).

[34] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.

2020. PANIC: AHigh-Performance Programmable NIC forMulti-tenant Networks.

In 14th USENIX Symposium on Operating Systems Design and Implementation
(Virtual Event) (OSDI).

[35] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore

Atreya. 2017. IncBricks: Toward In-Network Computation with an In-Network

Cache. In 22nd International Conference on Architectural Support for Programming
Languages and Operating Systems (Xi’an, China) (ASPLOS).

[36] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.

2016. ASIC Clouds: Specializing the Datacenter. In 43rd Annual International
Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA).

[37] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,

Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt

Werner. 2002. Simics: A full system simulation platform. IEEE Computer 35, 2
(Aug. 2002), 50–58.

[38] Christian Menard, Jeronimo Castrillon, Matthias Jung, and Norbert Wehn. 2017.

System simulation with gem5 and SystemC: The keystone for full interoperability.

In 2017 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (Pythagoreio, Greece) (SAMOS).

[39] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan

Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. 2010.

13

https://doi.org/10.1109/ISPASS48437.2020.00031
https://doi.org/10.1109/ISPASS48437.2020.00031
https://www.computeexpresslink.org/spec-landing
https://www.computeexpresslink.org/spec-landing
http://www.dpdk.org/
https://github.com/corundum/corundum
https://inet.omnetpp.org/
https://cdrdv2.intel.com/v1/dl/getContent/332464
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.1145/3132747.3132751


SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Hejing Li, Jialin Li, and Antoine Kaufmann

Graphite: A distributed parallel simulator for multicores. In 16th IEEE Interna-
tional Symposium on High-Performance Computer Architecture (Bangalore, India)
(HPCA).

[40] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David

Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. In 2015
ACM SIGCOMM Conference on Data Communication (London, United Kingdom)

(SIGCOMM).
[41] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-

murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support

for RDMA. In 2018 ACM SIGCOMMConference on Data Communication (Budapest,
Hungary) (SIGCOMM).

[42] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst, Daehoon

Kim, and Nam Sung Kim. 2017. dist-gem5: Distributed simulation of computer

clusters. In 2017 IEEE International Symposium on Performance Analysis of Systems
and Software (Santa Rosa, CA) (ISPASS).

[43] ns-2 Authors. 2022. The Network Simulator - ns-2. https://www.isi.edu/nsnam/

ns/. Retrieved Feb 2, 2022.

[44] nsnam. 2022. ns-3 | a discrete-event network simulator for internet systems.

https://www.nsnam.org/. Retrieved Feb 2, 2022.

[45] Joshua Pelkey and George Riley. 2011. Distributed Simulation with MPI in Ns-

3. In Proceedings of the 4th International ICST Conference on Simulation Tools
and Techniques (Barcelona, Spain) (SIMUTools ’11). ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), Brussels,

BEL, 410–414.

[46] QEMU Authors. 2022. QEMU – the FAST! processor emulator. https://www.

qemu.org/. Retrieved Feb 2, 2022.

[47] Steven K Reinhardt, Mark D Hill, James R Larus, Alvin R Lebeck, James C Lewis,

and David A Wood. 1993. The Wisconsin Wind Tunnel: virtual prototyping

of parallel computers. In 1993 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science (Santa Clara, CA) (SIGMETRICS).

[48] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,

R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. The Structural

Simulation Toolkit. ACM SIGMETRICS Performance Evaluation Review 38, 4

(March 2011), 37–42.

[49] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Microar-

chitectural Simulation of Thousand-Core Systems. In 40th Annual International
Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA).

[50] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Arvind Krishna-

murthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the Power of Flexible

Packet Processing for Network Resource Allocation. In 14th USENIX Symposium
on Networked Systems Design and Implementation (Boston, MA) (NSDI).

[51] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.

Approximating Fair Queueing on Reconfigurable Switches. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (Renton, WA) (NSDI).

[52] Siemens. 2022. ModelSim HDL Simulator. https://eda.sw.siemens.com/en-US/ic/

modelsim/. Retrieved Feb 2, 2022.

[53] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad

Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.

2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In

2016 ACM SIGCOMM Conference on Data Communication (Florianopolis, Brazil)

(SIGCOMM).
[54] Wilson Snyder. 2022. Verilator – the fastest Verilog HDL simulator. https:

//www.veripool.org/wiki/verilator. Retrieved Feb 2, 2022.

[55] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios

Pnevmatikatos, and Alexandros Daglis. 2020. The NeBuLa RPC-Optimized Ar-

chitecture. In 47th Annual International Symposium on Computer Architecture
(Worldwide) (ISCA).

[56] Hajime Tazaki, Frédéric Uarbani, EmilioMancini, Mathieu Lacage, Daniel Camara,

Thierry Turletti, and Walid Dabbous. 2013. Direct Code Execution: Revisiting

Library OS Architecture for Reproducible Network Experiments. In ACM Confer-
ence on Emerging Networking Experiments and Technologies (Santa Barbara, CA)
(CoNEXT).

[57] András Varga and Rudolf Hornig. 2008. An Overview of the OMNeT++ Sim-

ulation Environment. In 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops (Marseille,

France) (Simutools).
[58] TaoWang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.

2021. Isolation mechanisms for packet-processing pipelines. CoRR abs/2101.12691

(2021). arXiv:2101.12691 https://arxiv.org/abs/2101.12691

[59] Xilinx. 2022. Vivado 2021.2 Logic Simulation. https://www.xilinx.com/support/

documentation-navigation/design-hubs/dh0010-vivado-simulation-hub.html.

Retrieved Feb 2, 2022.

14

https://www.isi.edu/nsnam/ns/
https://www.isi.edu/nsnam/ns/
https://www.nsnam.org/
https://www.qemu.org/
https://www.qemu.org/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://arxiv.org/abs/2101.12691
https://arxiv.org/abs/2101.12691
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0010-vivado-simulation-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0010-vivado-simulation-hub.html


SimBricks: End-to-End Network System Evaluation with Modular Simulation SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Appendices are supporting material that has not been peer-reviewed.

A Appendix

A.1 Modular Simulation Orchestration

Finally, an operational challenge arises for running simulations with

SimBricks. Because we design SimBricks without any centralized

control, a simulation consists entirely of interconnected component

simulators. Thus, to run a complete end-to-end simulation, a user

has to start each individual component simulator, while providing

unique paths for the Unix sockets and shared memory regions for

each channel. While this is manageable with very small simulations,

the complexity rapidly grows with simulation size, along with the

additional challenges of cleanup, collecting simulation logs, and

monitoring for crashes. An additional challenge, especially when

running multiple simulations in parallel, is that performance dras-

tically degrades when overcommitting cores or memory. SimBricks

addresses both challenges with an orchestration framework for

assembling, running, and, if necessary, scheduling simulations.

from s imb r i c k s import ∗

for r a t e in [ 1 0 , 1 00 , 2 00 , 5 00 , 1 0 0 0 ] :

e = Exper iment ( ' udp− ' + s t r ( r a t e ) )

ne t = SwitchBM ( e )

s = Gem5Host ( e , ' s e r v e r ' )

s . n i c = I40eNIC ( e )

s . node_con f i g = I40eL inuxNode ( )

s . node_con f i g . i p = ' 1 0 . 0 . 0 . 1 '

s . node_con f i g . app = Ipe r fUDPServe r ( )

c = Gem5Host ( e , ' c l i e n t ' )

c . n i c = I40eNIC ( e )

c . node_con f i g = I40eL inuxNode ( )

c . node_con f i g . i p = ' 1 0 . 0 . 0 . 2 '

c . node_con f i g . app = Ip e r fUDPC l i en t ( )

c . node_con f i g . app . s e r v e r = ' 1 0 . 0 . 0 . 1 '

c . node_con f i g . app . r a t e = r a t e

expe r imen t s . append ( e )

Figure 12: An example of a simulation configuration in the

SimBricks orchestration framework.

Similar to other simulators with modular configuration we also

implement our orchestration in a scripting language. The SimBricks

orchestration framework is designed as a collection of python mod-

ules, and simulation experiments can be assembled by relying on

arbitrary python features. In addition to the previously mentioned

tasks, we also integrate functionality to automatically generate

customized disk images for host simulators, e.g. with different IP

address configurations or to run applications with separate param-

eters in individual hosts. In Fig. 12 we show an example script.

A.2 Inter-Simulator Message Transport

Fig. 13 shows pseudocode for the SimBricks queue implementation.

To enable zero-copy implementation in simulators producer and

rxQueue, rxLen←MapQueue(rx)

rxHead← 0

txQueue, txLen←MapQueue(tx)

txTail← 0

procedure PollMsg

msg← &rxQueue[rxHead]

while msg->owner ≠ CONSUMER do
Spin()

ReadMemoryBarrier()

rxHead← (rxHead + 1) % rxLen

return msg

procedure ReleaseMsg(msg)

msg->owner← PRODUCER

procedure AllocMsg

msg← &txQueue[txTail]

while msg->owner ≠ PRODUCER do
Spin()

txTail← (txTail + 1) % txLen

return msg

procedure EnqeueMsg(msg)

WriteMemoryBarrier()

msg->owner← CONSUMER

Figure 13: SimBricks multi-core shared memory message

passing queue. ReadMemoryBarrier and WriteMemory-

Barrier are compiler barriers to prevent re-ordering during

optimization.

consumer each have separate functions for getting access to an

available queue slot, PollMsg for the consumer and AllocMsg for

the producer, and then releasing in when processing is complete,

ReleaseMsg for the consumer and EnqeueMsg for the producer.

The consumer uses its local head pointer to determine the slot

the next message is or will be in and then checks the type and

ownership byte, re-trying if the slot is marked by as owned by the

producer. After the consumer completes processing a message it

marks the message as owned by the consumer. Symmetrically, the

producer uses its local tail pointer to determine the slot for the next

message, if necessary waits until the slot is marked as producer-

owned, and resets the ownership bit to consumer after it places

the message in the slot. Compiler memory barriers are necessary

to prevent the compiler from reordering memory accesses across

accesses to the ownership bit, but with the strong X86 memory

model no CPU memory barriers are necessary.

A.2.1 Coherence Behavior To understand the performance prop-

erties, consider three key cases, the queue is empty, the queue is

full, and the queue is neither empty nor full. When the queue is

empty, the consumer will spin on the last cache line, which will be

in the local L1 after the first access, and only incurs an additional

when the producer updates that cache line. When the queue is full,

the producer similarly waits for the next slot to free up with the

same coherence behavior. Finally, when neither is the case, the

consumer immediately finds a message when polling and incurs

a necessary miss that will fetch the message. Further, the CPU
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SimBricks Component Lines

SimBricks

core

Message transport library 1411

NIC behavioral model library 715

Distributed simulation proxy 2080

Runtime orchestration 2102

Host

simulators

gem5 integration 1265

QEMU integration 676

NIC

simulators

Corundum Verilator 1315

Intel i40e model 2900

Corundum model 911

gem5 e1000 model 2952

Network

simulators

ns-3 integration 158

OMNeT++ integration 208

Tofino simulator integration 330

Ethernet switch model 399

Menshen RMT Verilator 391

Packet generator 415

Dev sims. FEMU SSD integration 1005

Table 2: Lines of code for the various components in Sim-

Bricks, excluding blank lines and comments. For integrated

simulators we only count adapter code.

hardware prefetcher will likely already fetch the next message as

they are laid out sequentially in memory, thereby avoiding a de-

mand miss (but of course incurring the same coherence traffic). The

producer does have to read the ownership flag incurring a miss,

but also immediately finds the empty slot, and the same prefetcher

behavior applies.

A.3 SimBricks Implementation Effort

Tab. 2 shows a per-component breakdown of the implementation

effort for SimBricks, listing the number of lines of code.

A.4 Performance for SimBricks Configurations

Tab. 3 contains a cross-product of different simulators in SimBricks

for host, NIC, and the network. This is an extended version of Tab. 1

with the same experimental setup. Note that with recent versions

of QEMU we have found QEMU + timing (QT) no longer to be

fully deterministic and have instead observed minor variations in

simulation results.

Simulators Sim.

Host NIC Net T’put Latency Time Det.

QK IB SW 4.37G 71 𝜇s 00:00:32

QK IB NS 409M 141 𝜇s 00:00:32

QK IB TO 1.92M 6.6ms 00:00:33

QK CB SW 1.84G 211 𝜇s 00:00:29

QK CB NS 429M 294 𝜇s 00:00:30

QK CB TO 2.18M 6.7ms 00:00:33

QK CV SW 81M 3.4ms 00:00:31

QK CV NS 82M 3.4ms 00:00:32

QK CV TO 2.31M 23ms 00:00:33

QT IB SW 8.85G 17 𝜇s 01:05:03 (✓)
QT IB NS 8.88G 17 𝜇s 01:06:43 (✓)
QT CB SW 3.74G 28 𝜇s 01:00:24 (✓)
QT CB NS 3.74G 28 𝜇s 00:59:41 (✓)
QT CV SW 6.55G 32 𝜇s 04:13:10 (✓)
QT CV NS 6.39G 32 𝜇s 04:13:13 (✓)
G5 IB SW 8.84G 20 𝜇s 12:51:41 ✓
G5 IB NS 8.92G 20 𝜇s 12:49:46 ✓
G5 CB SW 3.05G 33 𝜇s 09:20:48 ✓
G5 CB NS 3.06G 33 𝜇s 09:26:13 ✓
G5 CV SW 6.70G 37 𝜇s 10:23:26 ✓
G5 CV NS 6.43G 37 𝜇s 10:21:28 ✓

Table 3: Performance for combinations of some of our compo-

nent simulators. Checkmarks mark deterministic combina-

tions. Host: QK is QEMU with KVM (functional simulation),

QT is QEMU with timing, and G5 is gem5. NIC: IB is the In-

tel behavioral model, CB the Corundum behavioral model,

and CV the Corundum verilator model. Network: SW is the

switch behavioral model, NS is ns-3, TO is the Tofino model.
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B Artifact Appendix

Abstract

The SimBricks artifact comprises two components, the source code

of the main simulator, and paper-specific parts (artifact scripts,

documentation, and data) to replicate the results in this paper.

Scope

Users interested in using SimBricks in their work should refer to

the former, as this will continue to evolve over time, while the latter

remains stable (modulo bug fixes) to ensure reproducible results.

The artifact scripts can run all major and minor experiments in

the paper, except for the physical testbed baseline for the dctcp ex-

periments. For deterministic simulations, results should be exactly

reproducible. Other measurements, especially simulation times, will

vary based on the hardware, but should be approximately repro-

ducible on similar hardware to what we describe.

Contents

The artifact contains everything required to reproduce the results

in the paper: source code, instructions for building and running

SimBricks, scripts for running experiments, and plotting scripts for

the graphs in the paper. We also include most of the execution logs

we generated for the experiments in this paper.

Hosting

Both the main SimBricks repo and the artifact package are hosted

on GitHub:

• Main SimBricks source:

https://github.com/simbricks/simbricks

• Artifact package:

https://github.com/simbricks/sigcomm22-artifact

For both we have tagged the version submitted for evaluation

with sigcomm22-ae-submission, and a stable version potentially

receiving bug-fixes will remain in the sigcomm22-ae branch. The
main branch will evolve and might contain breaking changes.

We have also built docker specifically for the artifact that we

link to in the artifact README file.

Requirements

The precise hardware requirements for each experiment vary signif-

icantly and are detailed in the artifact repository. All non-distributed

experiments only require a single machine, but require sufficient

processor cores (varies per experiment up to 44). The largest exper-

iments also require around 192GB of RAM.

We have tested SimBricks on Linux. The specific software de-

pendencies are provided by the documentation in the artifact repo.
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